首页> 外文OA文献 >A Fuzzy Probability Algorithm for Evaluating the AP1000 Long Term Cooling System to Mitigate Large Break LOCA
【2h】

A Fuzzy Probability Algorithm for Evaluating the AP1000 Long Term Cooling System to Mitigate Large Break LOCA

机译:用于评估AP1000长期冷却系统缓解大断裂LOCA的模糊概率算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Components of nuclear power plants do not always have historical failure data to probabilistically evaluate their reliability characteristics. To overcome this drawback, an alternative approach has been proposed by involving experts to qualitatively justifybasic event likelihood occurences. However, expert judgments always involve epistemic uncertainty and this uncertainty needs to be quantified. Existing fault tree analysis quantifies uncertainty using Monte Carlo simulation, which is based on probability distributions. Since expert judgments are not described in probability distributions, Monte Carlo simulation is not appropriate for evaluating epistemic uncertainty. Therefore, a new approach needs to be developed to overcome this limitation. This study proposes a fuzzy probability algorithmtoevaluate epistemic uncertainties in fault tree analysis.In the proposed algorithm, fuzzy probabilities are used to represent epistemic uncertainties of basic events, intermediate events, and the top event. To propagate and quantify epistemic uncertainty in fault tree analysis, a fuzzy multiplication rule and a fuzzy complementation rule are applied to substitute the AND Boolean and OR Boolean gates, respectively. To see the feasibility and applicability of the proposed algorithm, a case-based experiment on uncertainty evaluation of the AP1000 long term cooling system to mitigate the large break loss of coolant accident is discussed.The result shows that the best estimate probability to describe the failure of AP1000 long term cooling system generated by the proposed algorithmis3.15×10-11, which is very closed to the reference value of 1.11×10-11.This result confirms that the proposed algorithm offers a good alternative approach to quantify uncertainties in probabilistic safety assessment by fault tree analysis.Received:22 October 2014; Revised: 24 June 2015; Accepted: 29 June 2015
机译:核电厂的组件并不总是具有历史故障数据来概率地评估其可靠性特征。为了克服这个缺点,已经提出了一种替代方法,通过让专家参与以定性地证明基本事件可能性发生。但是,专家的判断总是涉及认知上的不确定性,这种不确定性需要量化。现有的故障树分析使用基于概率分布的蒙特卡洛模拟来量化不确定性。由于专家的判断未在概率分布中描述,因此蒙特卡罗模拟不适用于评估认知不确定性。因此,需要开发一种新的方法来克服此限制。本研究提出了一种模糊概率算法来评估故障树分析中的知识不确定性。在该算法中,模糊概率用于表示基本事件,中间事件和最高事件的认知不确定性。为了在故障树分析中传播和量化认知不确定性,分别使用模糊乘法规则和模糊补码规则来替换“与”布尔门和“或”布尔门。为了验证该算法的可行性和适用性,对基于案例的AP1000长期冷却系统不确定性评估实验进行了讨论,以减轻冷却液事故的大破坏损失,结果表明描述故障的最佳估计概率该算法生成的AP1000长期冷却系统的系数为3.15×10-11,非常接近参考值1.11×10-11。这一结果证实了该算法为量化概率不确定性提供了一种很好的替代方法通过故障树分析进行安全评估.2014年10月22日;修订日期:2015年6月24日;接受:2015年6月29日

著录项

  • 作者

    Purba, J.H;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 EN
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号